

Transient Voltage Suppressors (TVS) Data Sheet

5.0SMDJ SERIES

Features

- 5000W peak pulse power capability at 10/100 s waveform, repetition rate (duty cycle): 0.01%
- High Temperature soldering: 260°C/10 seconds at terminals
- Plastic package has underwriters laboratory flammability 94V-0
- For surface mounted applications in order to optimize board space
- Meets MSL level 1, per J-STD-020
- Typical I_R less than 5µA above 11V
- Low inductance
- Built-in strain relief
- Fast response time
- Low profile package
- Glass passivated junction
- Excellent clamping capability

Mechanical Data

- Weight: 0.3g
- Standard Packaging: 16mm tape (EIA STD RS-481)
- Case: JEDEC DO-214AB. Molded plastic over glass passivated junction
- Terminal: Solder plated, solderable per MIL-STD-750, Method 2026
- Polarity: Color band denotes cathode except bi-directional models

Applications

- I/O interface AC/DC power supply Vcc bus
- Low frequency signal transmission line (RS232, RS485, etc.)

Maximum Ratings and Characteristics

Ratings at 25° C ambient temperature unless otherwise specified.

Dimensions

Rating	Symbol	Value	Units
Peak pulse power dissipation at 10/1000µs waveform (Note1, Note2, Fig.1)	P _{PPM}	Minimum 5000	Watts
Peak pulse current of at 10/1000µs waveform (Note 1, Fig.3)	I _{PPM}	See Table	Amps
Steady state power dissipation at T_A=50 $^\circ \!\! ^\circ \!\!$	P _{M(AV)}	6.5	Watts
Peak forward surge current, 8.3ms single half sine-wave superimposed on rated load, (JEDEC Method) (Note3, Fig.6)	I _{FSM}	300	Amps
Operating junction and Storage Temperature Range.	T_{J},T_{STG}	-65 to +150	°C
Typical thermal resistance junction to lead	$R_{ extsf{ heta}JL}$	15	°C/W
Typical thermal resistance junction to ambient	R _{θJA}	75	°C/W

Notes: 1. Non-repetitive current pulse, per Fig.3 and derated above $T_A\text{=}25\,^\circ\!\!\mathbb{C}$ per Fig.2.

2. Mounted on 8.0mm×8.0mm (0.03mm thick) copper pads to each terminal.

3. 8.3ms single half sine-wave, or equivalent square wave, duty cycle=4 pulses per minutes maximum.

5.0SMDJ SERIES

Electrical Characteristics (T_A=25°C)

Part Number (Uni)	Part Number (Bi)	Marking		Reverse Stand off Voltage V _R	Breakdown Voltage V _{₿R} (Volts)@ I _⊺		Test Current I _T	Maximum Clamping Voltage V _c @I	Maximum Peak Pulse Current I	Maximum Reverse Leakage I _R
		UNI	BI	(voits)	MIN	MAX	(MA)	$(\widetilde{V})^{PP}$	(A)	(µ Å)
5.0SMDJ11A	5.0SMDJ11CA	5PEN	5BEN	11.0	12.20	13.50	10	18.2	275.00	50
5.0SMDJ12A	5.0SMDJ12CA	5PEP	5BEP	12.0	13.30	14.70	10	19.9	252.00	5
5.0SMDJ13A	5.0SMDJ13CA	5PEQ	5BEQ	13.0	14.40	15.90	10	21.5	233.00	5
5.0SMDJ14A	5.0SMDJ14CA	5PER	5BER	14.0	15.60	17.20	10	23.2	216.00	5
5.0SMDJ15A	5.0SMDJ15CA	5PES	5BES	15.0	16.70	18.50	1	24.4	205.00	5
5.0SMDJ16A	5.0SMDJ16CA	5PET	5BET	16.0	17.80	19.70	1	26.0	193.00	5
5.0SMDJ17A	5.0SMDJ17CA	5PEU	5BEU	17.0	18.90	20.90	1	27.6	181.00	5
5.0SMDJ18A	5.0SMDJ18CA	5PEV	5BEV	18.0	20.00	22.10	1	29.2	172.00	5
5.0SMDJ20A	5.0SMDJ20CA	5PEW	5BEW	20.0	22.20	24.50	1	32.4	155.00	5
5.0SMDJ22A	5.0SMDJ22CA	5PEX	5BEX	22.0	24.40	26.90	1	35.5	141.00	5
5.0SMDJ24A	5.0SMDJ24CA	5PEZ	5BEZ	24.0	26.70	29.50	1	38.9	129.00	5
5.0SMDJ26A	5.0SMDJ26CA	5PFE	5BFE	26.0	28.90	31.90	1	42.1	119.00	5
5.0SMDJ28A	5.0SMDJ28CA	5PFG	5BFG	28.0	31.10	34.40	1	45.4	110.00	5
5.0SMDJ30A	5.0SMDJ30CA	5PFK	5BFK	30.0	33.30	36.80	1	48.4	103.00	5
5.0SMDJ33A	5.0SMDJ33CA	5PFM	5BFM	33.0	36.70	40.60	1	53.3	93.90	5
5.0SMDJ36A	5.0SMDJ36CA	5PFP	5BFP	36.0	40.00	44.20	1	58.1	86.10	5
5.0SMDJ40A	5.0SMDJ40CA	5PER	5BER	40.0	44.40	49.10	1	64.5	77.60	5
5.0SMDJ43A	5.0SMDJ43CA	5PFT	5BFT	43.0	47.80	52.80	1	69.4	72.10	5
5.0SMDJ45A	5.0SMDJ45CA	5PFV	5BFV	45.0	50.00	55.30	1	72.7	68.080	5
5.0SMDJ48A	5.0SMDJ48CA	5PFX	5BFX	48.0	53.30	59.90	1	77.4	64.70	5
5.0SMDJ51A	5.0SMDJ51CA	5PFZ	5BFZ	51.0	56.70	62.70	1	82.4	60.70	5
5.0SMDJ54A	5.0SMDJ54CA	5PGE	5BGE	54.0	60.00	66.30	1	87.1	57.50	5
5.0SMDJ58A	5.0SMDJ58CA	5PGG	5BGG	58.0	64.40	71.20	1	93.6	53.50	5
5.0SMDJ60A	5.0SMDJ60CA	5PGK	5BGK	60.0	66.70	73.70	1	96.8	51.70	5
5.0SMDJ64A	5.0SMDJ64CA	5PGM	5BGM	64.0	71.10	78.60	1	103.0	48.60	5
5.0SMDJ70A	5.0SMDJ70CA	5PGP	5BGP	70.0	77.80	86.00	1	113.0	44.30	5
5.0SMDJ75A	5.0SMDJ75CA	5PGR	5BGR	75.0	83.30	92.10	1	121.0	41.40	5
5.0SMDJ78A	5.0SMDJ78CA	5PGT	5BGT	78.0	86.70	95.80	1	126.0	39.70	5
5.0SMDJ85A	5.0SMDJ85CA	5PGV	5BGV	85.0	94.40	104.00	1	137.0	36.50	5
5.0SMDJ90A	5.0SMDJ90CA	5PGX	5BGX	90.0	100.00	111.00	1	146.0	34.30	5
5.0SMDJ100A	5.0SMDJ100CA	5PGZ	5BGZ	100.0	111.00	123.00	1	162.0	30.90	5
5.0SMDJ110A	5.0SMDJ110CA	5PHE	5BHE	110.0	122.00	135.00	1	177.0	28.30	5
5.0SMDJ120A	5.0SMDJ120CA	5PHG	5BHG	120.0	133.00	147.00	1	193.0	26.00	5
5.0SMDJ130A	5.0SMDJ130CA	5PHK	5BHK	130.0	144.00	159.00	1	209.0	24.00	5
5.0SMDJ150A	5.0SMDJ150CA	5PHM	5BHM	150.0	167.00	185.00	1	243.0	20.60	5
5.0SMDJ160A	5.0SMDJ160CA	5PHP	5BHP	160.0	178.00	197.00	1	259.0	19.30	5
5.0SMDJ170A	5.0SMDJ170CA	5PHR	5BHR	170.0	189.00	209.00	1	275.0	18.20	5

Notes: For bidirectional type having $V_{\scriptscriptstyle \! R}\,$ of 11V and less, the $I_{\scriptscriptstyle \! R}\,$ limit is double.

5.0SMDJ SERIES

Ratings and Characteristic Curves (T_A =25 $^\circ$ Cunless otherwise noted)

100000 ╪╪ ╪╪╺_{╘╵}┙ 10000 Bi-directional V=0V Uni-directional V=0V 1000 Cj (pF) Uni-directional @VR 100 Bi-directional @VB 10 1 10 100 1000 1

Figure 5. Steady State Power Dissipation Derating

V_{BR}-Reverse Breakdown Voltage (V)

Figure 3. Pulse Waveform

Figure 2. Pulse Derating Curve

Figure 6. Maximum Non-Repetitive Forward Surge Current Uni-Directional Only

Figure 4. Typical Junction Capacitance

5.0SMDJ SERIES

Recommended Soldering Conditions

Profile Feature	Pb-Free Assembly		
Average ramp-up rate (T_L to T_P)	3℃/second max.		
Preheat -Temperature Min (T _{S min}) -Temperature Max (T _{S max}) -Time (min to max) (t _S)	150℃ 200℃ 60-180 seconds		
T _{S max} to T _L -Ramp-up Rate	3℃/second max.		
Time maintained above: -Temperature (T _L) -Time (t _L)	217℃ 60-150 seconds		
Peak Temperature (T _P)	260 ℃		
Time within 5 $^{\circ}$ C of actual Peak Temperature (t _P)	20-40 seconds		
Ramp-down Rate	6°C/second max.		
Time 25°C to Peak Temperature	8 minutes max.		

